Attacks against the DNS

Dave Piscitello
VP Security and ICT Coordination
April 2015
dave.piscitello@icann.org
About Dave

- Involved in networking and Internet since 1977
- Member of Internet Engineering Steering Group
- Author/Co-author of 6 Internet RFCs
- Author/Co-author of 3 books, several hundred articles
- Former consultant, advisor, tech editor, freelance journalist
- 2nd generation Italo-American
Agenda

• How does the DNS work?
• Attacking the DNS
• Attack mitigations and countermeasures
Part 1

• How does the DNS work?
• Attacking the DNS
• Attack mitigations and countermeasures
What is the Domain Name System?

A distributed database primarily used to obtain the IP address, a number, e.g., 192.168.23.1 or fe80::226:bbff:fe11:5b32 that is associated with a user-friendly name (www.example.com)

Why do we need a DNS?
It’s hard to remember lots of four decimal numbers and it’s impossibly hard to remember hexadecimal ones
The formal structure of the DNS database is an inverted tree with the root node at the top.

The root node is designated using a terminating “dot”.

Each node has a label.

The DNS is a public name space. It is one of many name spaces used on the Internet.
Each node in the DNS name space has a label.

The domain name of a node is a *list* of the labels on the path from the node to the root of the DNS.

When all labels are present, the name is called a **FULLY QUALIFIED DOMAIN NAME (FQDN)**.

FQDNs are globally unique in the public DNS.
Operational elements of the DNS

• Authoritative Name Servers host zone data
 – The set of “DNS data” that the registrant publishes

• Recursive Name Resolvers ("resolvers")
 – Systems that find answers to queries for DNS data

• Caching resolvers
 – Recursive resolvers that find and store answers locally for “TTL” period of time

• Client or “stub” resolvers
 – Software in applications, mobile apps or operating systems that query the DNS and process responses
 – Small business or home access routers may have stubs, too!
DNS: Internet’s directory assistance

• Client “stub” resolvers ask questions
 – Software in applications, mobile apps or operating systems that issue DNS queries and process responses

• Recursive name resolvers find answers to queries for DNS data

What is the IPv6 address for www.icann.org?

dns1.icann.org

I’ll find that answer for you
How does a resolver find the IP address of ICANN.ORG?

- Resolvers find answers by asking questions *iteratively*.

1. Ask root name servers for IPv6 address of ICANN.ORG.
2. Ask a0.org.afilias-nst.info for IPv6 address of ICANN.ORG.
3. Ask ns.icann.org for IPv6 address of ICANN.ORG.

What is caching?

- Resolvers may cache DNS records they receive from other name servers as they process client queries
 - Speeds up resolution
 - Saves bandwidth
 - Responses are non-authoritative
- Are cached records valid forever?
 - No. The time to live (TTL) field in DNS records bounds how long an iterative resolver can cache that particular record

What is the IPv6 address of icann.org?

My local resolver

I’ll cache this response

My PC

ICANN’s name server (authoritative)

icann.org
AAAA 2001:500:88:200::7
Summary

1. The DNS is a public, distributed database
2. The DNS allows us to use names rather than numbers to navigate the Internet
3. The operational elements of the DNS span from critical infrastructure to user devices
Agenda

• How does the DNS work?
• Attacking the DNS
• Attack mitigations and countermeasures
What can I do with a domain name?

• An engineer’s answer
 – Assign user friendly names to a computer (server) that hosts *Internet applications*:
 – Web, blog, file server, email, IP telephony

• A businessman’s answer
 – Create a merchant or other commercial online presence
 – Join a commodities market: buy, sell, auction domain names
 – Run a commercial service

• A government official’s answer
 – Provide services for public interest

• A criminal’s, insurgent’s, or terrorist’s answer
 – Misuse, exploit or disrupt public or business services
Motives to Attack or Exploit the DNS

Actor have specific motives or incentives to attack critical cyber infrastructures, including DNS.

Where are cybercrime and espionage in this diagram?
DNS Attack landscape

<table>
<thead>
<tr>
<th>Target</th>
<th>Authoritative Name Server</th>
<th>Recursive Resolver</th>
<th>Stub Resolver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access bandwidth</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Access network elements</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>NS or device:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>OS software</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Name server software</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Cache</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Application software</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Administration</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Configuration</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Attacks against name servers or recursors

• “Exploit to fail” Denial of Service (DOS) attack
• “Exploit to own” DOS attack
• Reflection attack
• Amplification attack
• Distributed DOS attack
• Cache Poisoning or Exhaustion attacks
• Reconnaissance attacks

Let’s look at some examples
“Exploit to fail” DOS attack

- Exploit a vulnerability in some element of a name server infrastructure to cause interruption of name resolution service
- Example: Malicious DNS message injection
“Exploit to own” DOS attack

• Exploit a vulnerability in some element of a name server infrastructure to gain system administrative privileges

• Example: *Arbitrary/remote code execution*
 • http://www.kb.cert.org/vuls/id/844360

![Diagram](attachment:image.png)
Reflection attack

• Attacker sends DNS messages to recursor from spoofed IP address of target
• Recursor sends response to targeted host
• Response delivered to targeted host

Attacker
Spoof source IP of target: 10.0.0.1

Targeted host IP: 10.0.0.1

Open Recursor

DNS Query

DNS Response
Reflection and Amplification attack

- Attacker sends DNS messages to recursor from spoofed IP address of target
- Recursor sends LARGE responses to targeted host
- Amplified responses delivered to targeted host consume resources faster

Spoof source IP of target: 10.0.0.1
Targeted host IP: 10.0.0.1
Distributed reflection and amplification attack (DDoS)

- Launch reflection and amplification attack from 1000s of origins
- Reflect through open recursor
- Deliver 1000s of large responses to target

All sources spoof source IP of target: 10.0.0.1
Targeted host IP: 10.0.0.1
Resource depletion DOS attack

- Attacker sends flood of DNS messages over TCP from spoofed IP address of target
- Name server allocates resources for connections until resources are exhausted
- Name resolution is degraded or interrupted

Spoof source IP of target: 10.0.0.1

Target Host IP: 10.0.0.1
Basic Cache Poisoning

Attacker

– Launches a spam campaign where spam message contains http://loseweightfastnow.com
– Attacker’s name server will respond to a DNS query for loseweightnow.com with malicious data about ebay.com
– Vulnerable resolvers add malicious data to local caches
– The malicious data will send victims to an eBay phishing site for the lifetime of the cached entry

What is the IPv4 address for loseweightfastnow.com

My PC

My local resolver

I’ll cache this response... and update www.ebay.com

looseweightfastnow.com IPv4 address is 192.168.1.1
ALSO www.ebay.com is at 192.168.1.2
NXDOMAIN Cache Exhaustion

- Attacker floods recursor with DNS queries for non-existent domain names
- Recursor attempts to resolve queries and adds each NXDOMAIN answer to cache
- Recursor’s cache fills with useless answers
- Processing of legitimate DNS queries is degraded

Phantom Domain Attack has similar effects
TTL Bypass Attack (Kaminski)

• Query “sibling” names via targeted recursor
 – 1.example.com, 2.example.com, 2.example.com...
 – These are not likely to be cached so there’s a 1/65536 chance of guessing the correct transaction ID

• Impersonate the authoritative name server

• Answer the sibling whose transaction ID you guessed

• Also provide answer for www.example.com

• You’re spoofing the authoritative DNS so recursors will accept this new address for www.example.com in your answer for the sibling name
Reconnaissance Attacks

• Zone Transfer
 – Query DNS to obtain list of domain’s name servers
 – Impersonate a secondary name server from list
 – Ask primary for zone

• Zone Enumeration, a.k.a.,
 – Use DNSSEC NSEC records to “zone walk”
 – Use a “dictionary” of subdomain labels to get partial name space and topology information

These precursor attacks provide intelligence for subsequent attacks
Attacks against stub resolvers

- Query interception attack
- DNS Response modification
 - Also called Name Error resolution
- Configuration poisoning attack
- DNS hostname overflow attack

Let’s look at some examples
Query Interception (DNS Hijacking)

- A man in the middle (MITM) or spoofing attack forwards DNS queries to a name server that returns forge responses
 - Can be done using a DNS proxy, compromised access router or recursor, ARP poisoning, or evil twin Wifi access point
Response Modification

- Recursive resolver is configured to return IP address of web, pay-per-click, or search page when it receives NXDOMAIN response.
- Also used by ISPs and 3rd parties for monetizing purposes.

What is the address of ww.example.com?

Address of ww.example.com is 192.168.12.113

Example.com Name Server

192.168.12.113

WW.example.com does not exist (NXDOMAIN)
Attacker distributes DNS configuration altering malware via
- Spam, drive-by download...

DNSChanger malware
- Alters DNS configuration of infected PC
- Causes all requests to go to a malicious name server run by attackers
- Attacker updates malware to redirect web traffic to a destination of his choosing
DNS hostname overflow attack

• Attacker crafts response message containing domain name > 255 bytes

• *Vulnerable* client queries attacker’s name server, fails to check hostname length in response

• Buffer overflow allows a attacker to gain root or execute arbitrary commands
DNS and registration system misuse

- DNS as a Covert Exfiltration Channel
- DNS as a Covert Malware Channel
- Fast Flux
- Domain hijacking, DNS hijacking

Let’s look at some examples
DNS as a Covert Exfiltration Channel

- DNS messages manipulated to forward sensitive data from infected PC through firewall to botnet command and control (C&C)
- Proof of concept: exfiltrate results of SQL injection attacks
DNS as a Covert Malware Channel

- Malware on infected PC performs TXT lookups to botnet C&C
- TXT responses contain instructions for bot
- Examples in wild:
 - Feederbot
 - Morto

Infected PC

Firewall allows inbound responses via port 53/DNS
Fast Flux Botnet

- **Attacker**
 - Associates IP address with a web host or DNS server for short time to live (TTL)
 - Changes IP of host or name server at low TTL frequency to thwart investigators

```
192.168.11.03
172.17.210.43
192.168.142.74
172.16.210.37
```
Domain registration hijacking

• Attacker compromises registration account, e.g.,
 – Succeeds with brute force, social engineering, or login attack
 – Launches a registrar impersonation phishing attack
 – Compromise gives attacker administrative control over domains registered under this account

• Attacker modifies/adds name server record for domain
 – NS record that is published in TLD zone associates domain’s name server with IP address of attacker’s host

• Attacker publishes “attack” zone data
 – Resource records in zone data support phishing, fraud, or defacement sites, spam mail exchanges, VoIP servers…

Note: An attacker can also compromise a name server directly
Summary

1. The DNS is an open system and *open also to abuse*

2. The DNS is a critical Internet database and thus a *target* for attack

3. Any element of the DNS may be *exploited* to facilitate other attacks
Agenda

• How does the DNS work?
• Attacking the DNS
• Attack mitigations and countermeasures
People and Resource planning

• Identify
 – Vulnerabilities
 – Bottlenecks
 – Capacities

• Plan
 – Initial Response and Abatement
 – Escalation
 – Upstream allies

• Intelligence
 – Information to help you identify whether you are a potential target, and why
DNS Defense in Depth

- Interpose layers of defense between attacker and DNS infrastructure
- Add diversity and redundancy to infrastructure

Attackers

Mitigation providers and upstream ISPs

Firewall

DNS proxy, DDoS, or DNS protection Appliance(s)

Name servers, recursors
Best Practices ("Best" if universally employed)

• Eliminate IP-spoofing (BCP 38)
 – Ingress Source Address filtering
 – Remotely Triggered Black Holing (RTBH)
 – Unicast Reverse Path Forwarding (uRPF)
 – ASN or Prefix Blocklisting

• Eliminate open resolvers (BCP 140)
 – Configure resolvers to only respond to queries from authorized users or applications
 – Enable logging and (threshold) monitor
Recommended DoS Mitigation measures

- Anycast routing
- DNS service segregation
- DNS intrusion defenses
- Redundancy and diversity measures
- TCP Flood abatement measures
 - SYN Proxies, SYN Cache, or SYN Cookies
- Over-provisioning
Anycast routing for resolvers or authoritatives

- **Unicast**: one DNS host, one IP address
- **Anycast**: many DNS hosts, one IP address
 - Routing forwards to closest available

If this DNS server is unreachable, names are resolved using another with same IP.
Example: Root Name System and Anycast DNS

- Diversity:
 - Geography
 - Hardware
 - Software
 - Bandwidth
 - Administration

- Redundancy
 - Failover
 - Load balancing
DNS Service Segregation

• Design network topology so that critical infrastructure is protected against side attacks
• Run DNS services on separate network segments from other services
• Run authoritatives on separate network segments from recursors
• Separate client networks from services
• Customized defenses for each segment
DNS intrusion defenses are implemented on premises at switches, routers, firewalls, security appliances or by mitigation providers.

<table>
<thead>
<tr>
<th>DNS Access Controls</th>
<th>DNS Volumetric Attack Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoofed source addresses</td>
<td>Excessive Name errors</td>
</tr>
<tr>
<td>Malformed or suspicious queries</td>
<td></td>
</tr>
<tr>
<td>Malformed or suspicious responses</td>
<td>Atypical DNS message sizes</td>
</tr>
<tr>
<td>Message length anomalies</td>
<td></td>
</tr>
<tr>
<td>Known bad/suspicious traffic origins</td>
<td>Atypical use of TCP</td>
</tr>
<tr>
<td>Known bad/suspicious domains</td>
<td></td>
</tr>
<tr>
<td>Known malicious/covert traffic patterns</td>
<td>Deviations from historical or planned traffic volume</td>
</tr>
<tr>
<td>Network traffic anomaly protection</td>
<td></td>
</tr>
<tr>
<td>Source or connection response rate limiting</td>
<td></td>
</tr>
</tbody>
</table>
DNS Redundancy (Failover)

- Primary processes: 100% of traffic
- Secondary processes: 0% of traffic

DNS server
Firewall, Switch

Secondary processes: 100% of traffic

DNS server
Firewall, Switch

DNS server
DNS server
Redundancy (Load Balancing)

Primary processes \(n \% \) of traffic

Firewall, Switch

DNS server

When traffic exceeds \(n \) secondary is added

DNS server

Where else can redundancy or diversity be implemented?
Over-provisioning

Deploy more capacity than
- you can conceivably consume
- attackers can overwhelm using volumetric attacks
- a.k.a. “Mother’s Day” capacity planning

Homework: look up Neal-Wilkinson and Erlang B Peaked Traffic models

https://www.flickr.com/photos/59937401@N07/
Configuration Management

• Keep software or firmware up to date
 – Operating systems
 – Name server software
 – Security and network systems

• Validate and archive
 – “last known working” configurations
 – zone data
 – Infrastructure topology
Real time policy enforcement

- Enforce DNS behavior and traffic policies
- Detect or drop – and log
 - DNS malformed traffic
 - “Known malicious” or suspicious DNS traffic patterns
 - Name error responses

Image by dingcarrie
Real time event monitoring

- At name servers and recursors
 - DNS process and traffic logging
 - Operating system process and event logging
 - Threshold-based alerts

Image by Jo mangee
Periodic Analysis

• Examine critical data for “correctness”
 – DNS zone data
 – Recursor caches

• Passive DNS replication
 – Review what names your users are resolving
 – Review name errors
• Points of contact for
 – Mitigation providers
 – Upstream ISPs
 – Hosting providers
 – Vendors and security service technical support
 – CERTs
 – Friendlies, e.g., security community
 – Law enforcement
 – Regulatory authorities (if applicable)
Domain name registration protection

• Maintain complete/accurate points of contact
• Monitor Whois record for unauthorized change
• In case of unauthorized transfer, keep records
 – Domain names, proofs of payments, registrar correspondence
 – Demonstrations of use: system/web logs, site archives
 – Legal documents: proofs of incorporation, tax filings, passport, other proofs of identity
 – Any documentation that demonstrates an association between the domain name and you
DNS Security (DNSSEC)

- Protects DNS data against forgery
- Uses public key cryptography to sign authoritative zone data
 - Assures that the data origin is authentic
 - Assures that the data are what the authenticated data originator published
- Trust model also uses public key cryptography
 - Parent zones sign public keys of child zone (root signs TLDs, TLDs sign registered domains...)
Public Key Cryptography in DNSSEC

- Authority signs DNS data with *private* key
 - Authorities must keep private keys secret!
- Authority publishes *public* key for everyone to use

```
DNS Data

Sign with Private key

Signed DNS Data + Digital signatures

Publish

Authoritative server
```
Public Key Cryptography in DNSSEC

• Any recipient of the authority’s DNS data can use the public key to verify that “the data are correct and came from the right place”
How DNSSEC defeats data poisoning attacks

Stub resolver rejects attacker’s DNS data as not validated

Validating recursor rejects attacker’s DNS data as not authentic

Authoritative server

Validating recursive server
1. Implement an in-depth defense to mitigate DNS attacks

2. Some mitigations require allies or broad implementation

3. Some of the best mitigations are “soft” (planning or administrative)
Reading list (Partial)

<table>
<thead>
<tr>
<th>Title</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 10 DNS attacks</td>
<td>http://www.networkworld.com/article/2886283/security0/top-10-dns-attacks-likely-to-infiltrate-your-network.html</td>
</tr>
<tr>
<td>Manage your domain portfolio</td>
<td>http://securityskeptic.typepad.com/the-security-skeptic/2014/01/avoid-risks-manage-your-domain-portfolio.html</td>
</tr>
<tr>
<td>DNS cache busting</td>
<td>http://blog.cloudmark.com/2014/10/07/a-dns-cache-busting-technique-for-ddos-style-attacks-against-authoritative-name-servers/</td>
</tr>
<tr>
<td>Protect the world from your network</td>
<td>http://securityskeptic.typepad.com/the-security-skeptic/2013/04/protecting-the-world-from-your-network.html</td>
</tr>
<tr>
<td>Protect your DNS servers against DDoS attacks</td>
<td>http://www.gtcomm.net/blog/protecting-your-dns-server-against-ddos-attacks/</td>
</tr>
<tr>
<td>Fast Flux Botnet Detection in Realtime</td>
<td>http://www.iis.sinica.edu.tw/~swc/pub/fast_flux_bot_detection.html</td>
</tr>
</tbody>
</table>
Questions?

My Contact Info:

dave.piscitello@icann.org
@securityskeptic
www.securityskeptic.com
about.me/davepiscitello

Contact ICANN:
engagement@icann.org
@icann
icann.org
safe.mn/icannsecurityteam